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Abstract. Expressions are derived for the reflection of plane incident waves from the closed end of a narrow wave
tank when a number of thin vertical porous screens are introduced to damp the waves. The results may have
application to the design of wave tanks where a small amount of beach reflection is desirable.

1. Introduction

One of the major problems associated with experiments in narrow wave tanks is unwanted
wave reflections. The usual way of avoiding this is to introduce a sloping beach made of say,
horse-hair or similar material, in order to dissipate the incident wave energy. An alternative
method has recently been proposed (Pawlowski, personal communication) which involves
using a number of thin perforated vertical metal screens suitably positioned next to a vertical
wall. In the present work we examine this idea theoretically on the assumption that the
dissipative properties of a single screen are known from experiment. Thus Tuck [1, p. 118 et
seq.] discusses the application of a Darcy law of flow across such a screen and suggests that
in the special case of sinusoidal oscillations in time the velocity across the screen should be
related to the pressure drop by a complex-valued frequency-dependent parameter which
accounts for both viscous and inertial effects. Such an assumption will be made here, and a
matrix method described which enables the reflection from any number of screens in the
presence of the wall, to be determined.

The problem of inserting screens in a closed rectangular tank of fluid is also considered. In
the absence of such screens the fluid will oscillate with well-defined frequencies and with
negligible damping. In some circumstances, for example, in the transportation of dangerous
fluids, it may be desirable to introduce such screens in order to damp out unwanted
oscillations. The method described here enables equations describing the complex fre-
quencies to be determined for n identical equally-spaced screens.

2. Formulation

We choose two-dimensional Cartesian co-ordinates with y vertically upwards and x to the
right. The bottom of the tank is y = 0, and the undisturbed free surface is y = h. The vertical
wall occupies x = 0, 0 y h, and the mth screen x = am, 0 y -- h, m = 1, 2, .. ., n. On the
basis of linearised water-wave theory there exists a velocity potential (x, y, t)=
Re[ck(x, y) e - 'wt ] where (x, y) satisfies
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V2b = 0 in the fluid, (2.1)

Ksb- y=0 ony=h, K= 2/g, (2.2)

= 0 on y = 0, (2.3)

4 = 0 on x = 0. (2.4)

In our first problem we shall assume that a plane wave of frequency o and amplitude A is
incident from x = +-x and is partially reflected back to positive infinity after undergoing
multiple reflections at the screens and the wall. Thus we assume

p(x, y) - gA [e-ikox + R, eik] cosh ko(h - y), x-- +o, (2.5)

where k is the positive real root of

w2/g = K = k o tanh koh . (2.6)

We seek to minimise Rn by judicious choice of the position of the screens.
It is convenient to separate the problem into regions. Thus the mth region is am_, - x 

am, 0 - y - h, m = 2,..., n, having the (m - 1)th screen as the left boundary, the mth screen
as the right. We choose a = 0 so that the first region lies between the wall at x = 0 and the
first screen.

We assume that within each region m there exists a potential km(x, y) satisfying conditions
(2.1), (2.2) and (2.3). In addition on the mth screen we require that the horizontal velocity
of the fluid be continuous:

m - m x=a,, m = ,2,..n, (2.7)dx ax

whilst

Oxl =0 onx=0, (2.8)dX

where q n+1(x, y) is the potential in x > a having asymptotic behaviour for large x given by
(2.5).

We also assume a Darcy law at each screen of the form

Um = Cm[pm] (2.9)

where Um is the horizontal velocity and

[Pm] =-PiW(m+- m}), x=am, m=1,2,...,n, (2.10)

is the jump in dynamic pressure across the mth screen. Tuck [1] has suggested that a good
empirical approximation to the inclusion of both inertial and viscous permeabilities is given
by assuming
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Cm = Km[1 + 2pCmKm(-i)) ] (2.11)

where Km measures viscous dissipation at the screen and Cm ' is the net blockage coefficient
for the screen (Tuck [1], eqn. (5.29)).

Combining (2.9) and (2.10) gives

m=_iPCm(cm+{ -m) , x=am m = 1, 2..., n, (2.12)
dx

where cm is a frequency-dependent complex parameter, presumed known.
We can separate out the y-dependence by writing

0m(x, ) = gA ,(x) cosh koy (2.13)

where (2.13) satisfies (2.2), (2.3). Then r(x) must satisfy

$"(x) + k m(x ) = , x2 k0, (2.14)

m'(x) = , X = O, (2.15)

(x) 'n+l(X) (2.16)
X=am, m=1,2,...,n.

m~+l(X) = ioOPCm( d*m+ 1 - tm) (2.17)

We now let

im+(X) = Am eiko(x -am) + Bm e-ik(x -am ) m = 1, n (2.18)

where choosing AO = Bo ensures that (2.15) is satisfied, and choosing

A n e-ikoam = R n , B eikoan = 1 (2.19)

ensures that (2.5) is satisfied for x > an . Application of (2.16) gives

Am - Bm = Am_ 1 eikb - Bm_1 e-ik b m m = 1, 2 , n (2.20)

where bm = am - am_,, and (2.17) gives

-2,m(Am - Bm) = Am + Bm - Am_ 1 ei b m -B m e m = 1, 2... n (2.21)

where

2ixm = ko/pocm , assumed known. (2.22)

We can solve (2.20), (2.21) for Am, Bm in terms of Am_l, Bm_1. Thus

Am) = T 1 , m m= 1, 2,..., n, (2.23)Bm]
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where ((1-.m) eikob- g eikbm \
T = (2.24)

tm eikobm + ) e ikobm

It follows from (2.19) that

(e on) (Bn) Bo) (1) (2.25)

where

T= T IT 2 .Tn (.Yn (an say. (2.26)

Thus

Rn e2 ik0oa = (an + 3n)/(yn + 8n). (2.27)

Equation (2.27) provides an explicit expression for the reflection coefficient R n in terms of
the elements of the matrix T formed from the product over m = 1,..., n of the matrices Tm
given by (2.24). The result (2.27) is exact under the assumptions of the problem and
incorporates the different spacings of the screens and the separate empirical permeability
constants /Am for each screen. Bearing in mind that in general each /um is a frequency-
dependent complex quantity, the task of optimising the spacing and the number of screens in
order to achieve a small value of IRJn over a range of incident wavelengths is a daunting
prospect. In the case of a single screen, n = 1 and we have from (2.24), (2.25) with m = 1,
am = bm = a, say, and g1 = /,

2ikoa (1 - p.) eikoa jL e-ikoa
R1 e2 ioa (1 ) eikoa - eikoa (2.28)

cos k0 a + (1 - 2p.)i sin k 0a
cos ka - (1 + 2/x)i sin koa (2.29)

Now p. = ko/2pwc, from (2.21) and p. =0 corresponds to c = o and, from (2.12), to
continuity of the potentials across the screen.

It follows, as expected, from (2.28) that in this case R = 1, total reflection occurring from
the rigid wall at x = 0. Conversely if - oc, c -> 0 and from (2.12) the screen is impervious
to the flow, whence R = e -2 ik ° a, the phase factor reflecting the fact that the wave is
completely reflected by the screen at x = a.

In the absence of the back wall at x = 0, a transmitted wave would exist travelling
undiminished towards x = -x. The reflection coefficient in this case is obtained by relaxing
the condition AO = Bo and instead choosing A0 = 0 to ensure no wave is reflected from x = 0.
The reflection coefficient in this case, for n screens, is now given from (2.24) with A0 = 0.
Thus eliminating B0,

Rm e2
ikoa. = P2 63 (2.30)
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where the superscript o indicates the wall at x = 0 is no longer present. For n = 1 we obtain

R. e2ikoa = /(1 + .), (2.31)

IR1I = J /L11 + A1, (2.32)

showing how the effect of the screen, through p2, affects the amplitude of the incident wave
in an infinitely long tank. The combination of both screen and end wall provides the
possibility of considerable reduction in IRIl. Thus it follows from (2.29) that R, = 0 when

cos ka = (2 /. - 1)i sin ka , (2.33)

which, since koa is real, can only be achieved if

2/ -1 = -iA, A real, (2.34)

when the condition for R, = 0 becomes

cot koa = A, when A = 2k0oC + i(k0/Kpo - 1) (2.35)

from (2.11). There exists the possibility therefore of zero reflection at a particular frequency
o = w provided both

K1 = ko/pwo and cot koa = 2k0 C (2.36)

simultaneously. Here aw = gko tanh koh.
In general A is a complex frequency-dependent parameter and, in terms of A, we have

R 1 e2ikoa = cos ka - A sin koa (2.37)
cos ka - (A + 2i) sin k0a

and

IR11= cot ka -A I(2.38)
cot k 0 a-(A+2i)

If I Al is small it would appear desirable to choose a L/4, or to position the screen close to
a quarter-wavelength (L14) from the back wall so that cot ka = cot(2ira/L) is also small.
Conversely if IAl is large a spacing of half a wavelength is more appropriate.

In summary, then it would appear that knowledge of C1, K, and hence A for the screen
enables us to make a sensible choice of where to position the screen relative to the back wall
in a given incident wave, so as to minimise R1 I given by (2.38), and that it is possible, for
some value of A, that R, I vanishes for some frequency o = co%.

As has been mentioned, the problem of more than one screen is complicated and involves
products of matrices. There is one case however in which progress can be made. We assume
we have n identical screens equally-spaced a distance, say, a apart and having identical
permeability coefficients K. Then p. = .m. and bm = a for all m and (2.24) becomes

207
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(1 - ) eikoa (1 ) e-ikoa (239)T I -Ae °koa A) e - ikoa ) 1 (2.39)

which is independent of m. To obtain an explicit form for (T)" we define, assuming A # 1,

cosh A = cos ka - i sin koa,

cosh B = -cos koa + i - 1 sin koa (2.40)

where A, B are complex. It can be shown that

1 ( sinh(B + nA) e-ikoa sinh nA\
T= T sinh B eiko sinh nA sinh(B-nA) (2.41)

( sinhnA sinh(B - nA)]

For n = 1 the proof follows, since from (2.40)

(1 + ) e±ikoa = cosh A -,u cosh B, (2.42)

whence

1 - 2 = cosh2A - y2cosh2 B or = sinh A/sinh B, (2.43)

and hence

(1 + ) e±-iko = sinh(B + A)/sinh B. (2.44)

The proof for general n follows by induction. We notice also from (2.36) the useful result

e-ikOa = sinh(B + A)/(sinh B + sinh A). (2.45)

It follows from (2.41) and (2.27) with a = na that

Rn e2ikoan = an + In _ sinh(B + nA) + e-'ikoa sinh nA
y, + ,, sinh(B - nA) - e+ika sinh nA

cosh(B + nA) - cosh(n + 1)A (2.47
cosh(B - nA) - cosh(n + 1)A

sinh{ (2n + 1)A + B) sinh (A - B) (2.48)
sinh{ 2(2n + 1)A - B) sinh ½(A + B)

after some algebra which makes use of (2.45). Equation (2.46), (2.47) or (2.48) is a general
expression for the reflection from n identical equally-spaced screens in terms of the constants
A, B defined by (2.40).

For n = 0 there are no screens and IRn = 1 as expected. For a single screen, n = 1 and the
expression (2.46) reduces to
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sinh(B + A) + e -
ikoa sinh A /_ (cosh B + e-ikoa) + cosh A

sinh(B - A) - eikoa sinh A - -/.(cosh B + eikoa) + cosh A

iu(-l + - 1) sin koa + cos koa - i sin k0 a

-. (1 + -') sin ka + cos ka - i sin ka '

using (2.40),

cos koa + i(1 - 2,u) sin k 0a

cos ka - i(l + 2u) sin ka '

in agreement with (2.29).
As a check on the general result we consider --, 0 corresponding to continuity of

potentials across the screens so that the screens vanish as --- 0. We expect Rn -* 1.
Now, asx --, 0,

cosh A = cos koa - i sin koa = cos(koa + i) + O(/ 2 ), (2.49)

or

A- i(ka + i), --> O, (2.50)

whilst

p1 cosh B = i(sin koa + ipu cos koa) = i sin(koa + i/.) + O( /2) 

p. sinh B = sinh A = i sin(koa + i) + O(/L2 ) . (2.51)

Thus

Rn e2ik0na i sin(koa + i/J) enA - t cosh(n + 1)A
i sin(koa + i/A) e-

nA -_ cosh(n + 1)A

e 2ikona as Ap-0, orRn-*1 as l-*O.

For small I u computation of Rn from (2.46) is facilitated by making use of (2.50), (2.51).
The condition for Rn to vanish identically is, from (2.48),

B=A+2ip7r or B+(2n+l)A=2iqr, p, qintegers, (2.52)

provided the denominator of (2.48) does not vanish. The first condition is not admissible
since it implies sinh B = sinh A or p. = 1 from (2.43) which is excluded. The second
condition implies

cosh B = cosh(2n + 1)A,

and it follows from (2.45) that

209
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eikoa sinh(B+A) sinh 2nA
sinh B - sinh A sinh(2n + 1)A + sinh A

sinh nA
inh nA from (2.52). (2.53)

sinh(n + 1)A

For example, if n = 1 we have the condition

ikoa sinh A
e sinh2A or 2cosh A = e- ko

whence

cosh koa = (2Au - 1)i sin koa = A sin ka,

in agreement with (2.37).
We next consider our second problem. We shall suppose that beyond x = an the tank is

closed by a vertical rigid wall at x = an+ > an. In the absence of the screens the water
contained between the walls at x = 0 and x = an+l would oscillate indefinitely with a

frequency o given by 2o = gko tanh koh where kan+1 = m7r, m = 1, 2,....
Introduction of the screen will have the effect of damping the motion and producing a

complex frequency having negative imaginary part (e - "' assumed). To accommodate all n
screens we need only choose

A n eiko0b n = Bn e- ikob n

to ensure that, from (2.18),

q;+i(x) =0 on x=an1 .

Then, from (2.25),

e2ikb, ] An = T[ A,

or

An = (a + J3)A , A e2ikobn = (n + 6n)A,

whence

(an + ,) e2ikobn = Y + /n (2.54)

is the equation for the determination of the k.
In the case of a single screen we obtain from (2.24) (2.54), with m = 1,

{(1 - u2) eiko° a + / e- ik oa} e2 ikob = (1 + /2) e-ikoa _- / eikoa (2.55)

where
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/21/ and b=a2 -a 1 .

Solving for / gives

2, sin ka sin kb = -i sin koc, c = a + b, (2.56)

as the equation for the frequencies w2 = gko tanh koh.
A similar equation was obtained in the related problem of a partly immersed vertical baffle

in a rectangular wave tank, by Evans and McIver [2] by using a wide-spacing approximation.
Here, since the screen extends throughout the fluid the theory is 'exact' under the
assumption of the Darcy law (2.12) across the screen.

Now since i-1 = 2ipoclko, --> 00, or cl- 0 corresponds to an impermeable screen and
equation (2.56) has the solution sin koa = sin k 0b = 0 corresponding to undamped free
oscillations in the two separate fluid regions. Conversely 2 - 0, c ---> corresponds to
continuity of potentials across the screen from (2.17) so that in effect the screen disappears.
In this case (2.56) has the solution sin koc = 0, being the condition for undamped oscillations
in the single larger fluid region of width c = a + b.

For finite IL (2.56) provides a complex equation for the determination of the complex wave
numbers k and hence the complex frequencies from (2.6). If a = b, (2.56) reduces to

cos koa = i sin koa . (2.57)

As for the reflection problem it is possible to make progress in the case of n identical
equally-spaced screens by using the explicit expression (2.41) for T. Thus from (2.54), with
bn = a, the equation for the complex frequencies becomes

(sinh B)- 1 {2 sinh nA + eikoa sinh(B + nA) - e-
iko°a sinh(B - nA)} = O ,

which, after making use of (2.45), reduces after some algebra to

sin ka sinh(n + 1)A=O, sinh A 0.

The condition sinh A # 0 implies cosh A # -+1 and so rules out the solutions sin koa = 0,
and we are left with

sin(n+l)A=0 or A=ip7r(n+l),

whence from (2.40)

coskoa-ip sinkoa = cos( " 1 ), p =1,2,..., n (but notp =0, n +1). (2.58)

Note that in the related problem of the partly immersed thin vertical rigid baffle
considered by Evans and McIver [2] the solution sin ka = 0 was allowable since a standing-
wave solution in each separate region, having zero normal velocity on the boundary of each
region is possible. This solution is not available here since from (2.17) this would require p
to be continuous across, and also to vanish at the boundaries, and there is no such non-trivial
solution.
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The solution (2.58) for n = 1 reduces to (2.57) as required, since p = 1 is the only
permissible choice. For /x small, (2.58) can be written

cos(k0a + i) = cos pri )

so that

k 0 a = -i + + p=1,2,...,n,

and we have n damped modes corresponding to p = 1,2,..., n, all with the same
exponential decay.

3. Conclusion

A theory has been presented for determining the effectiveness of a number of thin porous
screens in reducing unwanted wave reflections in a narrow wave tank. A general expression
(2.29) has been derived for the reflection by a single screen under a Darcy law assumption in
terms of assumed known permeability and blockage coefficients given by (2.22) and (2.11).
This result was then generalised ((2.47) and (2.40)) to n identical equally-spaced screens by
making use of a useful explicit form for the nth power of a 2 x 2 matrix.

The problem of the wave-damping produced by the introduction of one or n identical
screens into a closed rectangular tank was also considered and expressions derived ((2.58)
and (2.6)) for the determination of the complex wave frequency o describing the decay of
the waves.
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